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Why Do We Need Pipelining?

• Real-life Example: Four loads of laundry that need to 

be washed, dried, and folded.

– Washing: 30 minutes

– Drying: 40 minutes

– Folding: 20 minutes
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https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

• Without pipeline:

– (30 + 40 + 20) ∗ 4 =
360 minutes in total

• With pipeline:

– 30 + 40 ∗ 4 + 20 =
210 minutes in total



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution
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Recall: Sequential Execution

• The processor fetches and executes instructions, one 

after the other.

– Fi: Fetch steps for instruction Ii

– Ei: Execute steps for instruction Ii

• Execution of a program consists of a sequential 

sequence of fetch and execute steps:

• How to improve the speed of execution?

– Use faster technologies to build CPU and memory ($$$).

– Arrange hardware to perform multiple tasks at a time ($).
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F1 E1 F2 E2 F3 E3

I1 I2 I3

Time

PC: contains the memory address 
of the next instruction to be fetched.
IR: holds the instruction that is 
currently being executed.



Separate HW & Interstage Buffer

• Consider a computer having two separate hardware 

units:

– One hardware unit is for fetching instructions.

– The other hardware unit is for executing instructions.

• Interstage Buffer: Deposit the fetched instruction.

– Execution unit executes the deposited instruction.

– Fetch unit fetches the next instruction at the same time.

CSCI2510 Lec11: Pipelining 2021-22 T1 5

Instruction
Fetch
Unit

Execution
Unit

Interstage buffer

Instruction

In
st

ru
ct

io
n



• Assume the computer is controlled by a clock.

– Both fetch and execute can be done in one clock cycle.

• Fetch and execute units form a two-stage pipeline:

– Both units are kept busy all the time.

– An interstage buffer is needed to hold the instruction.

– Parallelism is increased by overlapping fetch and execute.

• If executions sustain for a long time, the completion rate of a two-

stage pipelining will be twice (more stages always better?).
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Basic Idea of Instruction Pipelining
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4-Stage Pipeline (1/2)

• Design Principles of Pipeline

1) All stages should be able to perform their tasks 

simultaneously without interfering others.

• The required information (i.e., instruction) is passed from one unit to 
the next through an interstage buffer.

2) Each stage should take roughly the same maximum clock 

period (i.e., a clock cycle) to complete its task.

• Why? A stage that completes its task early will be idle.

• Example: 4-Stage Pipeline

– F: Fetch instruction from memory

– D: Decode instruction and fetch source operands

– E: Execute instruction

– W: Write the result
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F
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instruction

D
Decode

instruction

4-Stage Pipeline (2/2)
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Class Exercise 11.1

• During clock cycle 4, what is the information hold by 

the three interstage buffers (i.e., B1, B2, and B3) 

respectively?
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution
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Reality: Stall & Hazard

• If any pipeline stage requires more than 1 cycle, 

other stages must wait, causing the pipeline to stall.

– E.g., E2 requires three cycles to complete.

• Hazard: Any condition that causes pipeline to stall.
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Types of Hazards

1) Data Hazard

– The operands of an instruction are not available 

when required.

2) Instruction Hazard

– A delay in the availability of an instruction.

3) Structural Hazard

– Two instructions require the use of a given 

hardware resource at the same time.
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 14



1) Data Hazard
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I1 (Mul)

I2 (Add)

I3

Instruction

1 2 3 4 5 6 7 8 9Clock cycle
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Pipeline is stalled for two cycles.

I1: A = 3 * A;

I2: B = 4 + A;

D: Decode and fetch

source operands

• A data hazard is a situation in which the pipeline is 

stalled because the operands are delayed.

• Example:

– Dependent operations must be performed sequentially to 

ensure the data consistency.



Class Exercise 11.2

• Please specify whether we will encounter data 

hazards for the following two cases.
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I1: A = 5 * C;

I2: B = 20 + C;

I1: C = A * B;

I2: E = C + D;
Case A Case B



Software Solution to Data Hazard

• The compiler detects and introduces two-cycle delay

by inserting NOP (No-operation) instructions.

– Advantage: Simpler hardware, less cost

– Disadvantage: Larger code size, less flexibility, and 

“still degraded” performance
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I1: A = 3 * A;

I2: B = 4 + A;

No any pipeline stage 

requires more than 1 

cycle to complete. 



Hardware Solution to Data Hazard (1/2)

• The data hazard arises because I2 is waiting for data 

to be written into the destination operand A.

• In fact, the result of I1 is available at the output of ALU.

• Delay can be reduced if the result can be “forwarded”.
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D: Decode and fetch
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I1: A = 3 * A;

I2: B = 4 + A;

Result of I1 is available here!



Hardware Solution to Data Hazard (2/2)

• Operand Forwarding: The execution of I2 can 

proceed without stalling via the forwarding path.

– Disadvantage: Additional hardware cost
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E: Execute
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution
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2) Instruction Hazard

• Recall: The purpose of the instruction fetch unit is to 

supply the execution units with instructions.

– F: Fetch instruction from memory

– D: Decode instruction and fetch source operands

– E: Execute instruction

– W: Write the result

• Instruction Hazard: The cases cause the pipeline to 

stall, because of the delay of instructions.

– Example 1: Cache miss

– Example 2: Branch instruction
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Instruction Hazard Ex1: Cache Miss

• The effect of a cache miss on the pipelined operation 

is as follows:

– I1 is fetched from the cache in cycle 1.

– The fetch operation F2 for I2 results in a cache miss.

• The instruction fetch unit must suspend any further fetch requests until 

F2 is completed.
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• Branches may also cause the pipeline to stall.

– Branch Penalty: The time lost because of a branch inst.

– Branch penalty can be reduced by computing the branch 

address earlier in Decode stage (rather than Execute stage)

• However, it still results in 1 cycle branch penalty to the pipeline.
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discarded

F 3 X

F k D k Ek

F k+ 1 D k+ 1

I 3

I k

I k+ 1

W k

E k+ 1

Only I3 is 
discarded

Instruction Hazard Ex2: Branch



Solution to Instruction Hazard

• Instruction Queue: The interstage buffer between 

Fetch and Decode units can keep multiple instructions.

– Fetch unit gets and deposits one instruction at a time.

– Decode unit consumes one instruction at a time.
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F4

W3E 3

F2 D2 E 2 W2

F3 D3

E 4D4 W4F4
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Example: Without Instruction Queue

F1 D1 E 1 E 1 E 1 W1
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Instruction 1 takes 3 

Execute cycles (i.e., 2-

cycle stall).

Instruction 4 is delayed.

Instruction 5 is a branch .

Instruction 6 is discarded.

F5 D5

Since there is no

instruction queue!

• Without the instruction queue:

I1, I2, I3, I4, and Ik cannot complete in successive cycles.



• With the instruction queue: 

I6 is still discarded but I1, I2, I3, I4, and Ik can be “possibly” 

completed in successive cycles.
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Example: With Instruction Queue
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Instruction 6 is discarded, after 

taking Branch.

The queue length drops to 1 

before cycle 8.



Class Exercise 11.3

• Please show how the instruction queue can help hide 

the delay of cache miss (3 cycles) caused by F4.
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All intermediate instructions
must be discarded …

• Conditional branches may worsen the hazard.

– Since the condition is based on the preceding instruction.

• Example:
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Instruction Hazard: Conditional Branch
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R2 is used as the 
branch condition.
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Solution 1) Delayed Branch (1/2)

• The location(s) following a 

branch instruction is 

called branch delay slot(s).

– There may be more than 

one branch delay slot, 

depending on how long it 

takes to execute a branch.

• Delayed branching can 

minimize the penalty by

– Placing useful instructions 

in branch delay slot(s), and

– Internally re-ordering the 

instructions.
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R2
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NEXT R1,R3

(b) Internally Re-ordered instructions
(actual program logic NOT affected)

Branch Delay Slot



Solution 1) Delayed Branch (2/2)

• Delayed branching can minimize the branch penalty.
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Class Exercise 11.4

• Suppose a pipelined processor has two branch delay

slots but does not utilize the delayed branch

technique. If 20 percent of the instructions executed

are branch instructions, what is the required number

of cycles to complete 100 instructions?
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Solution 2) Branch Prediction (1/2)
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F1
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I1 (Compare)

I2 (Branch>0)
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Fk D k
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Incorrect Prediction
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Correct Prediction

• Attempt to predict

whether conditional 

branch will take place.

– Delayed branch can 

be applied together.

• Branch Prediction: 

– If we get it right: no 

lost cycles.

• Registers and memory 

cannot be updated until 

we know we got it right.

– If we get it wrong, just 

cancel the instructions.

– Branch prediction can 

be dynamic or static.



Solution 2) Branch Prediction (2/2)

• Static Branch Prediction

– The same choice is used every time the conditional branch 

is encountered.

– For example, a branch instruction at the end of a loop 

causes a branch to the start of the loop for every pass 

through the loop except the last one.

• It is helpful to assume this branch will be taken under this case.

– A flexible approach is to have the compiler decide.

• Dynamic Branch Prediction

– The choice is influenced by the past behavior.

– For example, a simple prediction is to use the result of the 

most recent execution of the branch instruction.
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Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution
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3) Structural Hazard

• A structural hazard is the situation when two 

instructions require the use of a hardware resource at 

the same time.

• The most common case is in accessing to memory.

– Case 1: One instruction is accessing memory during the 

Execute or Write stage; while another is being fetched.

– Solution 1: Many processors use separate instruction and 

data caches to avoid this delay.

– Case 2: Another example is when two instructions require 

access to the register file at the same time.

– Solution 2: Let the register file have more input/output ports.

• In general, the structural hazard can be avoided by 

providing sufficient hardware resources ($$$).
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An Example of Structural Hazard
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Memory cannot be 

read twice in the 

same clock cycle.



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution
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Superscalar Operation

• Superscalar: Execute multiple instructions at any 

time via multiple processing units (i.e., we can 

execute more than one instruction per cycle)

CSCI2510 Lec11: Pipelining 2021-22 T1 41

W : Write
results

Decode /
Dispatch

unit

Instruction 
queue

Floating-
point
unit

Integer
unit

F : Instruction
fetch unit

Fetch two instructions
at a time

Decode two 
instructions
at a time

I1 (FracAdd)

Instruction

Clock cycle 1 2 3 4 5 6

Time

F1 D1 E1A E1B E1C W1

I2 (Add) F2 D2 E2 W2



Out-of-Order Execution (1/2)

• Superscalar operation may result in out-of-order 

execution, and cause data consistency issue.

– In our previous example, I1 and I2 are dispatched in the 

same order as they appear.

– However, their execution is completed out of order.

– To guarantee a consistent state when out-of-order 

execution occur, the results of the execution of instructions 

must be written in program order strictly .

• The out-of-order execution can make good use of 

cycles if instructions can be “properly re-ordered”.

– E.g., the delayed branching technique reorders the 

instructions to minimize the branch penalty.
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Out-of-Order Execution (2/2)

• Instruction 1 results in a cache miss, and a cache 

miss can stall entire processor for 20-30 cycles.

• Instruction 2 cannot be executed since it needs R1.
R1  mem[r0] /* Instruction 1 */

R2  R1 + R2 /* Instruction 2 */

R5  R5 + 1 /* Instruction 3 */

R6  R6 – R3 /* Instruction 4 */

• In instruction queue, look ahead and find instructions 

3 and 4 to execute first (reordering).

R1  mem[r0] /* Instruction 1 */

R5  R5 + 1 /* Instruction 3 */

R6  R6 – R3 /* Instruction 4 */

R2  R1 + R2 /* Instruction 2 */
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Summary

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution
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