
CSCI2510 Computer Organization

Lecture 11: Pipelining

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 8 (5th Ed.)

mailto:mcyang@cse.cuhk.edu.hk


Why Do We Need Pipelining?

• Real-life Example: Four loads of laundry that need to 

be washed, dried, and folded.

– Washing: 30 minutes

– Drying: 40 minutes

– Folding: 20 minutes

CSCI2510 Lec11: Pipelining 2021-22 T1 2

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html

• Without pipeline:

– (30 + 40 + 20) ∗ 4 =
360 minutes in total

• With pipeline:

– 30 + 40 ∗ 4 + 20 =
210 minutes in total



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 3



Recall: Sequential Execution

• The processor fetches and executes instructions, one 

after the other.

– Fi: Fetch steps for instruction Ii

– Ei: Execute steps for instruction Ii

• Execution of a program consists of a sequential 

sequence of fetch and execute steps:

• How to improve the speed of execution?

– Use faster technologies to build CPU and memory ($$$).

– Arrange hardware to perform multiple tasks at a time ($).
CSCI2510 Lec11: Pipelining 2021-22 T1 4

F1 E1 F2 E2 F3 E3

I1 I2 I3

Time

PC: contains the memory address 
of the next instruction to be fetched.
IR: holds the instruction that is 
currently being executed.



Separate HW & Interstage Buffer

• Consider a computer having two separate hardware 

units:

– One hardware unit is for fetching instructions.

– The other hardware unit is for executing instructions.

• Interstage Buffer: Deposit the fetched instruction.

– Execution unit executes the deposited instruction.

– Fetch unit fetches the next instruction at the same time.

CSCI2510 Lec11: Pipelining 2021-22 T1 5

Instruction
Fetch
Unit

Execution
Unit

Interstage buffer

Instruction

In
st

ru
ct

io
n



• Assume the computer is controlled by a clock.

– Both fetch and execute can be done in one clock cycle.

• Fetch and execute units form a two-stage pipeline:

– Both units are kept busy all the time.

– An interstage buffer is needed to hold the instruction.

– Parallelism is increased by overlapping fetch and execute.

• If executions sustain for a long time, the completion rate of a two-

stage pipelining will be twice (more stages always better?).

CSCI2510 Lec11: Pipelining 2021-22 T1 6

Basic Idea of Instruction Pipelining

F 1 E 1

F 2 E 2

F 3 E 3

I 1

I 2

I 3

Instruction

Clock cycle 1 2 3 4 Time



4-Stage Pipeline (1/2)

• Design Principles of Pipeline

1) All stages should be able to perform their tasks 

simultaneously without interfering others.

• The required information (i.e., instruction) is passed from one unit to 
the next through an interstage buffer.

2) Each stage should take roughly the same maximum clock 

period (i.e., a clock cycle) to complete its task.

• Why? A stage that completes its task early will be idle.

• Example: 4-Stage Pipeline

– F: Fetch instruction from memory

– D: Decode instruction and fetch source operands

– E: Execute instruction

– W: Write the result

CSCI2510 Lec11: Pipelining 2021-22 T1 7



F
Fetch

instruction

D
Decode

instruction

4-Stage Pipeline (2/2)

CSCI2510 Lec11: Pipelining 2021-22 T1 8

F 4I4

F 1

F 2

F 3

I1

I2

I3

D1

D2

D3

D4

E 1

E 2

E 3

E 4

W1

W2

W3

W4

Instruction

Clock cycle 1 2 3 4 5 6 7

E
Execute

operation

W
Write

results

Interstage buffers

B1 B2 B3

Time



Class Exercise 11.1

• During clock cycle 4, what is the information hold by 

the three interstage buffers (i.e., B1, B2, and B3) 

respectively?

CSCI2510 Lec11: Pipelining 2021-22 T1 9

Student ID: 

Name:

Date:

F
Fetch

instruction

D
Decode

instruction

F 4I4

F 1

F 2

F 3

I1

I2

I3

D1

D2

D3

D4

E 1

E 2

E 3

E 4

W1

W2

W3

W4

Clock cycle 1 2 3 4 5 6 7

E
Execute

operation

W
Write

results

B1 B2 B3

Time



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 11



Reality: Stall & Hazard

• If any pipeline stage requires more than 1 cycle, 

other stages must wait, causing the pipeline to stall.

– E.g., E2 requires three cycles to complete.

• Hazard: Any condition that causes pipeline to stall.
CSCI2510 Lec11: Pipelining 2021-22 T1 12

F 1

F 2

F 3

I 1

I 2

I 3

E 1

E 3

D 1

D 2

D 3

W 1

W 2

W 3

Instruction

F 4 D 4I 4

Clock cycle 1 2 3 4 5 6 7 8 9

E 4

F 5I 5 D 5

T ime

E 5

W 4

In cycles 5 and 6: W, D and F units 

must wait and do nothing …

E 2



Types of Hazards

1) Data Hazard

– The operands of an instruction are not available 

when required.

2) Instruction Hazard

– A delay in the availability of an instruction.

3) Structural Hazard

– Two instructions require the use of a given 

hardware resource at the same time.

CSCI2510 Lec11: Pipelining 2021-22 T1 13



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 14



1) Data Hazard

CSCI2510 Lec11: Pipelining 2021-22 T1 15

I1 (Mul)

I2 (Add)

I3

Instruction

1 2 3 4 5 6 7 8 9Clock cycle

I4

F 1

F 2

F 3

D 1

D 3

E 1

E 3

E2

W3

W1

D2-A W2

F 4 D4 E 4 W 4

D 2

Time

Pipeline is stalled for two cycles.

I1: A = 3 * A;

I2: B = 4 + A;

D: Decode and fetch

source operands

• A data hazard is a situation in which the pipeline is 

stalled because the operands are delayed.

• Example:

– Dependent operations must be performed sequentially to 

ensure the data consistency.



Class Exercise 11.2

• Please specify whether we will encounter data 

hazards for the following two cases.

CSCI2510 Lec11: Pipelining 2021-22 T1 16

I1: A = 5 * C;

I2: B = 20 + C;

I1: C = A * B;

I2: E = C + D;
Case A Case B



Software Solution to Data Hazard

• The compiler detects and introduces two-cycle delay

by inserting NOP (No-operation) instructions.

– Advantage: Simpler hardware, less cost

– Disadvantage: Larger code size, less flexibility, and 

“still degraded” performance

CSCI2510 Lec11: Pipelining 2021-22 T1 18

F 1

F 2

I1 (Mul)

I2 (Add)

D 1 E 1

E2

Instruction

1 2 3 4 5 6 7 8 9Clock cycle

W1

W2D 2

Time

NOP

NOP

I1: A = 3 * A;

I2: B = 4 + A;

No any pipeline stage 

requires more than 1 

cycle to complete. 



Hardware Solution to Data Hazard (1/2)

• The data hazard arises because I2 is waiting for data 

to be written into the destination operand A.

• In fact, the result of I1 is available at the output of ALU.

• Delay can be reduced if the result can be “forwarded”.

CSCI2510 Lec11: Pipelining 2021-22 T1 19

F 1

F 2

F 3

I1 (Mul)

I2 (Add)

I3

D 1

D 3

E 1

E 3

E2

W3

Instruction

1 2 3 4 5 6 7 8 9Clock cycle

W1

D2-A W2

F 4 D4 E 4 W 4I4

D 2

Time

D: Decode and fetch

source operands

I1: A = 3 * A;

I2: B = 4 + A;

Result of I1 is available here!



Hardware Solution to Data Hazard (2/2)

• Operand Forwarding: The execution of I2 can 

proceed without stalling via the forwarding path.

– Disadvantage: Additional hardware cost

CSCI2510 Lec11: Pipelining 2021-22 T1 20

E: Execute
(ALU)

W: Write
(Register file)

SRC1,SRC2 RESULT

(b) Source and result registers

Register

file

SRC1 SRC2

RESULT

Destination

Source 1

Source 2

(a) Datapath (3 buses)

ALU

Port A Port B



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 21



2) Instruction Hazard

• Recall: The purpose of the instruction fetch unit is to 

supply the execution units with instructions.

– F: Fetch instruction from memory

– D: Decode instruction and fetch source operands

– E: Execute instruction

– W: Write the result

• Instruction Hazard: The cases cause the pipeline to 

stall, because of the delay of instructions.

– Example 1: Cache miss

– Example 2: Branch instruction
CSCI2510 Lec11: Pipelining 2021-22 T1 22

F
Fetch

instruction

D
Decode

instruction

E
Execute

operation

W
Write

results

B1 B2 B3



Instruction Hazard Ex1: Cache Miss

• The effect of a cache miss on the pipelined operation 

is as follows:

– I1 is fetched from the cache in cycle 1.

– The fetch operation F2 for I2 results in a cache miss.

• The instruction fetch unit must suspend any further fetch requests until 

F2 is completed.

CSCI2510 Lec11: Pipelining 2021-22 T1 23

F1

F2

I1

I2

I3

D1

D2

E1

E2

W1

W2

F3 D3 E3 W3

Instruction

1 2 3 4 5 6 7 8 9Clock cycle
Time

F3

Postponed



• Branches may also cause the pipeline to stall.

– Branch Penalty: The time lost because of a branch inst.

– Branch penalty can be reduced by computing the branch 

address earlier in Decode stage (rather than Execute stage)

• However, it still results in 1 cycle branch penalty to the pipeline.

CSCI2510 Lec11: Pipelining 2021-22 T1 24

F1 D1 E 1 W1

I2 (Branch to Ik)

I1

1 2 3 4 5 6 7Clock cycle

F2 D2

Branch address computed in Execute stage
Branch Penalty: 2 clock cycles

E 2

8
Time

F 1 D1 E 1 W1

I2 (Branch to Ik)

I 1

1 2 3 4 5 6 7Clock cycle

F2 D2

Branch address computed in Decode stage
Branch Penalty: 1 clock cycle

Time

Fk D k Ek

Fk+ 1 Dk+ 1

Ik

Ik+ 1

Wk

E k+ 1

XF3I
3

D3

F4 XI4

I3 and I4 must be 
discarded

F 3 X

F k D k Ek

F k+ 1 D k+ 1

I 3

I k

I k+ 1

W k

E k+ 1

Only I3 is 
discarded

Instruction Hazard Ex2: Branch



Solution to Instruction Hazard

• Instruction Queue: The interstage buffer between 

Fetch and Decode units can keep multiple instructions.

– Fetch unit gets and deposits one instruction at a time.

– Decode unit consumes one instruction at a time.

CSCI2510 Lec11: Pipelining 2021-22 T1 25

Instruction queue

E
Execute

operation

W
Write

results

D
Decode

instruction

F
Fetch

instruction

Interstage buffers



F4

W3E 3

F2 D2 E 2 W2

F3 D3

E 4D4 W4F4

CSCI2510 Lec11: Pipelining 2021-22 T1 26

Example: Without Instruction Queue

F1 D1 E 1 E 1 E 1 W1

I5 (Branch to Ik)

I1

1 2 3 4 5 6 7 8 9Clock cycle

I2

I3

I4

I6

Ik

Ik+ 1

10
Time

XF6

Fk D k Ek

Fk+ 1 D k+ 1

Wk

E k+ 1

11 12

Instruction 1 takes 3 

Execute cycles (i.e., 2-

cycle stall).

Instruction 4 is delayed.

Instruction 5 is a branch .

Instruction 6 is discarded.

F5 D5

Since there is no

instruction queue!

• Without the instruction queue:

I1, I2, I3, I4, and Ik cannot complete in successive cycles.



• With the instruction queue: 

I6 is still discarded but I1, I2, I3, I4, and Ik can be “possibly” 

completed in successive cycles.
CSCI2510 Lec11: Pipelining 2021-22 T1 27

Example: With Instruction Queue

F1 D1 E 1 E 1 E 1 W1

I5 (Branch to Ik)

I1

1 2 3 4 5 6 7 8 9Clock cycle

I2

I3

I4

I6

Ik

Ik+ 1

10

1Queue length 1 1 12 3 2 1 1 1

Time

X

F4

W3E 3

F2 D2 E 2 W2

F3 D3

E 4D4 W4

F5

F6

Fk D k Ek

Fk+ 1 D k+ 1

Wk

E k+ 1

Keep 
fetching

D5

Instruction 1 takes 3 Execute

cycles (i.e., 2-cycle stall), 

The queue length rises to 3 

before cycle 6.

Instruction 5 is a branch . 
*Assume D3 and D5 can be performed at the same time.

Instruction 6 is discarded, after 

taking Branch.

The queue length drops to 1 

before cycle 8.



Class Exercise 11.3

• Please show how the instruction queue can help hide 

the delay of cache miss (3 cycles) caused by F4.

CSCI2510 Lec11: Pipelining 2021-22 T1 28

F1 D1 E 1 E 1 E 1 W1

W3E 3

I1

F2 D2

1 2 3 4 5 6 7 8 9Clock cycle

E 2 W2

F3 D3

I2

I3

I4

10
Time

11 12

F1 D1 E 1 E 1 E 1 W1

W3E 3

I1

F2 D2 E 2 W2

F3 D3

I2

I3

I4

1 2 3 4 5 6 7 8 9Clock cycle 10
Time

11 12

1 1 1Queue length

Without

Instruction 

Queue

With

Instruction 

Queue

F4 E 4D4 W4F4 F4 F4F4



All intermediate instructions
must be discarded …

• Conditional branches may worsen the hazard.

– Since the condition is based on the preceding instruction.

• Example:

CSCI2510 Lec11: Pipelining 2021-22 T1 30

Instruction Hazard: Conditional Branch

Add

LOOP Shift_left R1

Decrement

Branch=0

R2

LOOP

NEXT R1,R3

R2 is used as the 
branch condition.

We need to wait for R2 to 
determine whether to perform 
the conditional branching.

F 1 D1 E 1 W1

I 2 (Decrement)

I 1

1 2 3 4 5 6 7Clock cycle

F3 D3I 3

Time

F 2 D2 E 2 W2

(Shift)

(Branch if R2 = 0) D3-R2

F k D k EkIk W k

8 9 10

LOOP



Solution 1) Delayed Branch (1/2)

• The location(s) following a 

branch instruction is 

called branch delay slot(s).

– There may be more than 

one branch delay slot, 

depending on how long it 

takes to execute a branch.

• Delayed branching can 

minimize the penalty by

– Placing useful instructions 

in branch delay slot(s), and

– Internally re-ordering the 

instructions.

CSCI2510 Lec11: Pipelining 2021-22 T1 31

Add

LOOP Shift_left R1

Decrement

Branch=0

R2

LOOP

NEXT R1,R3

(a) Original program loop

Add

LOOP

Shift_left R1

Decrement

Branch=0

R2

LOOP

NEXT R1,R3

(b) Internally Re-ordered instructions
(actual program logic NOT affected)

Branch Delay Slot



Solution 1) Delayed Branch (2/2)

• Delayed branching can minimize the branch penalty.

CSCI2510 Lec11: Pipelining 2021-22 T1 32

Instruction

1 2 3 4 5 6 7 8Clock cycle Time

F ENEXT: Add (Branch not taken) WD

9 10

(ALU result forwarding)

F D

F Daddr

F E

Decrement

Branch=0?

Shift (delay slot)

E

W

W

D

(get branch address)

F E

F

F E

Decrement (Branch is taken)

Branch=0?

Shift (delay slot)

W

W

D

Daddr

D

(get branch address)

(ALU result forwarding)



Class Exercise 11.4

• Suppose a pipelined processor has two branch delay

slots but does not utilize the delayed branch

technique. If 20 percent of the instructions executed

are branch instructions, what is the required number

of cycles to complete 100 instructions?

CSCI2510 Lec11: Pipelining 2021-22 T1 33



Solution 2) Branch Prediction (1/2)

CSCI2510 Lec11: Pipelining 2021-22 T1 35

F1

F2

I1 (Compare)

I2 (Branch>0)

D1 E1 W1

Instruction

E2

Clock cycle 1 2 3 4 5 6

D 2 / P2

Time

I3 F3 D 3 X(Branch Delay Slot)

F4

Fk D k

XI4

Ik

Incorrect Prediction

Fk DkIk

Correct Prediction

• Attempt to predict

whether conditional 

branch will take place.

– Delayed branch can 

be applied together.

• Branch Prediction: 

– If we get it right: no 

lost cycles.

• Registers and memory 

cannot be updated until 

we know we got it right.

– If we get it wrong, just 

cancel the instructions.

– Branch prediction can 

be dynamic or static.



Solution 2) Branch Prediction (2/2)

• Static Branch Prediction

– The same choice is used every time the conditional branch 

is encountered.

– For example, a branch instruction at the end of a loop 

causes a branch to the start of the loop for every pass 

through the loop except the last one.

• It is helpful to assume this branch will be taken under this case.

– A flexible approach is to have the compiler decide.

• Dynamic Branch Prediction

– The choice is influenced by the past behavior.

– For example, a simple prediction is to use the result of the 

most recent execution of the branch instruction.

CSCI2510 Lec11: Pipelining 2021-22 T1 36



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 37



3) Structural Hazard

• A structural hazard is the situation when two 

instructions require the use of a hardware resource at 

the same time.

• The most common case is in accessing to memory.

– Case 1: One instruction is accessing memory during the 

Execute or Write stage; while another is being fetched.

– Solution 1: Many processors use separate instruction and 

data caches to avoid this delay.

– Case 2: Another example is when two instructions require 

access to the register file at the same time.

– Solution 2: Let the register file have more input/output ports.

• In general, the structural hazard can be avoided by 

providing sufficient hardware resources ($$$).
CSCI2510 Lec11: Pipelining 2021-22 T1 38



An Example of Structural Hazard

CSCI2510 Lec11: Pipelining 2021-22 T1 39

Memory cannot be 

read twice in the 

same clock cycle.



Outline

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 40



Superscalar Operation

• Superscalar: Execute multiple instructions at any 

time via multiple processing units (i.e., we can 

execute more than one instruction per cycle)

CSCI2510 Lec11: Pipelining 2021-22 T1 41

W : Write
results

Decode /
Dispatch

unit

Instruction 
queue

Floating-
point
unit

Integer
unit

F : Instruction
fetch unit

Fetch two instructions
at a time

Decode two 
instructions
at a time

I1 (FracAdd)

Instruction

Clock cycle 1 2 3 4 5 6

Time

F1 D1 E1A E1B E1C W1

I2 (Add) F2 D2 E2 W2



Out-of-Order Execution (1/2)

• Superscalar operation may result in out-of-order 

execution, and cause data consistency issue.

– In our previous example, I1 and I2 are dispatched in the 

same order as they appear.

– However, their execution is completed out of order.

– To guarantee a consistent state when out-of-order 

execution occur, the results of the execution of instructions 

must be written in program order strictly .

• The out-of-order execution can make good use of 

cycles if instructions can be “properly re-ordered”.

– E.g., the delayed branching technique reorders the 

instructions to minimize the branch penalty.

CSCI2510 Lec11: Pipelining 2021-22 T1 42



Out-of-Order Execution (2/2)

• Instruction 1 results in a cache miss, and a cache 

miss can stall entire processor for 20-30 cycles.

• Instruction 2 cannot be executed since it needs R1.
R1  mem[r0] /* Instruction 1 */

R2  R1 + R2 /* Instruction 2 */

R5  R5 + 1 /* Instruction 3 */

R6  R6 – R3 /* Instruction 4 */

• In instruction queue, look ahead and find instructions 

3 and 4 to execute first (reordering).

R1  mem[r0] /* Instruction 1 */

R5  R5 + 1 /* Instruction 3 */

R6  R6 – R3 /* Instruction 4 */

R2  R1 + R2 /* Instruction 2 */

CSCI2510 Lec11: Pipelining 2021-22 T1 43



Summary

• Sequential Execution vs Pipelining

• Pipeline Stall: Hazard

– Data Hazard

– Instruction Hazard

– Structural Hazard

• Superscalar and Out-of-Order Execution

CSCI2510 Lec11: Pipelining 2021-22 T1 44


